多倫多大學(xué)的微積分課程學(xué)習(xí)眾多數(shù)學(xué)主題,不少同學(xué)總是覺(jué)得課程很難,考試也不知道怎么備考。下面我們提供一些這門(mén)課程經(jīng)常會(huì)出現(xiàn)的一些作業(yè)題目,同學(xué)們?cè)谄綍r(shí)學(xué)習(xí)中或者考前復(fù)習(xí)時(shí)都可以用這些題目來(lái)做提升訓(xùn)練。
一、課程內(nèi)容
unit1:邏輯、集合、符號(hào)、定義和證明
unit2:極限和連續(xù)性
unit3:導(dǎo)數(shù)
unit4:超越函數(shù)
unit5:中值定理及其應(yīng)用
unit6:極限和導(dǎo)數(shù)的應(yīng)用
unit7:積分的定義
unit8:微積分的基本定理
unit9:積分方法
unit10:積分的應(yīng)用
unit11:序列
unit12:反常積分
unit13:系列
unit14:冪級(jí)數(shù)和泰勒級(jí)數(shù)
二、作業(yè)題分享
1.Negate each of the following statements without using any negative words (‘no’,‘not’, ‘none’, etc):
(a) “Every page in this book contains at least one word whose first and last letters both come alphabetically before M.”
(b) “I have a friend all of whose former boyfriends had at least two siblings with exactly three different vowels in their name.”
(c) “If a student in this class likes the musical Cats then they are not my friend.”

2. Consider the following definitions about real numbers x:
? x is courageous when ?a > 0, x < a
? x is hard-working when ?a ≥ 0, x < a
? x is intelligent when ?a > 0, x ≤ a
? x is ambitious when ?a ≥ 0, x ≤ a
3.Given a real number x, we defined the floor of x, denoted by b xc , as the largest integer smaller than or equal to x. For example, [π] = 3, [ 7 ] = 7, and [?0.5] = ?1.
(a) Sketch the graph of this function. At which points is the function f(x) = [x] continuous? Which discontinuities are removable and which ones are nonremovable?
(b) Consider the function h(x) = [sin x] . Show that h has exactly one removable and one non-removable discontinuity inside the interval (0, 2π).
4.The functions G and H have both domain R. They are continuous everywhere. They satisfy G(0) = 0 and H(0) = 0. Moreover, G0 = g and H0 = h, where g and h are the functions in Question 2. Sketch the graphs of G and H.
5.You know what your final answers should be. Just make sure that at each point you are only using things that have already been proven.
6.Now we have a bar which lies on the x-axis, from the position x = 1 to the position x = 7 (all values of x are measured in meters). The bar is made of different materials. Between x = 1 and x = 2, the density of the bar is 2kg/m; between x = 2 and x = 5, the density is 3kg/m; between x = 5 and x = 5.5, the density is 10kg/m, and between x = 5.5 and x = 7, the density is 1kg/m. What is the total mass of the bar?
三、微積分課程作業(yè)基本解題思路
審題→繪圖→思考方法并選擇→套用定理or公式→邊界條件→檢查計(jì)算過(guò)程
1.審題時(shí)需要你明確這道題目的具體要求,找到關(guān)鍵信息,尤其是一些隱含條件。對(duì)于有些題目,需要繪圖才能更清晰地知道怎么解題。一道題目也可能不止一種解題方式,在解題時(shí),你往往需要決定使用哪種方法,另外可以根據(jù)題目特點(diǎn)選擇恰當(dāng)?shù)奈⒎e分方法,比如求導(dǎo)、積分、極限等等。
解題過(guò)程中,一些基本定理和公式是關(guān)鍵,導(dǎo)數(shù)、積分、微分中值定理分別是什么,怎么使用,這些在你練題之前都可以先復(fù)習(xí)一遍。最后,做完題目,一定不能忘記檢查,不要犯一些低級(jí)錯(cuò)誤。
以上是多倫多大學(xué)的大一微積分課作業(yè)相關(guān)問(wèn)題分享,希望可以幫助大家更了解題目出題方式。在學(xué)習(xí)過(guò)程中有任何問(wèn)題,同學(xué)們都可以直接向考而思的專(zhuān)業(yè)老師提問(wèn)!
圖片歸版權(quán)方所有,頁(yè)面圖片僅供展示。如有侵權(quán),請(qǐng)聯(lián)系我們刪除。凡來(lái)源標(biāo)注“考而思”均為考而思原創(chuàng)文章,版權(quán)均屬考而思教育所以,任何媒體、網(wǎng)站或個(gè)人不得轉(zhuǎn)載,否則追究法律責(zé)任。
添加微信【kaoersi03】(備注官網(wǎng))申請(qǐng)?jiān)嚶?tīng),享專(zhuān)屬套餐優(yōu)惠!
kaoersi03
咨詢(xún)電話(huà)
咨詢(xún)電話(huà):
132-6331-8174
在線咨詢(xún)
微信客服

kaoersi03
回到頂部